
Haqq - Backend
WebApp Pentest

Prepared by: Halborn

Date of Engagement: August 21st, 2023 - September 8th, 2023

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 5

CONTACTS 6

1 EXECUTIVE OVERVIEW 7

1.1 INTRODUCTION 8

1.2 ASSESSMENT SUMMARY 8

1.3 SCOPE 10

1.4 TEST APPROACH & METHODOLOGY 11

RISK METHODOLOGY 11

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 13

3 FINDINGS & TECH DETAILS 14

3.1 (HAL-01) POTENTIAL DENIAL OF SERVICE - MEDIUM 16

Description 16

Proof of Concept 16

CVSS Vector 17

Risk Level 17

Recommendation 17

Remediation Plan 18

3.2 (HAL-02) LACK OF RATE LIMITING IN API ENDPOINTS - MEDIUM 19

Description 19

Proof of Concept 19

CVSS Vector 21

Risk Level 21

Recommendation 21

Reference 21

1



Remediation Plan 21

3.3 (HAL-03) DOCKER COMPOSE ENVIRONMENT VARIABLE MISCONFIGURATION -

MEDIUM 22

Description 22

Code Location 22

CVSS Vector 25

Risk Level 25

Recommendation 25

Reference 25

Remediation Plan 25

3.4 (HAL-04) OUTDATED VERSIONS OF TLS SUPPORTED - MEDIUM 26

Description 26

Proof of Concept 27

CVSS Vector 28

Risk Level 28

Recommendation 28

Remediation Plan 29

3.5 (HAL-05) CACHEABLE HTTPS RESPONSE - MEDIUM 30

Description 30

Proof of Concept 30

Risk Level 32

CVSS Vector 32

Recommendation 32

Reference 33

Remediation Plan 33

3.6 (HAL-06) MISSING SECURITY HEADERS - LOW 34

Description 34

2



Proof of Concept 34

CVSS Vector 35

Risk Level 35

Recommendation 35

Reference 35

Remediation Plan 36

3.7 (HAL-07) REFLECTED UNSANITIZED INPUT - LOW 37

Description 37

Screenshot 37

CVSS Vector 38

Risk Level 38

Recommendation 38

Reference 38

Remediation Plan 39

3.8 (HAL-08) VULNERABLE THIRD PARTY DEPENDENCIES - LOW 40

Description 40

Proof of Concept 40

CVSS Vector 40

Risk Level 41

Recommendation 41

References 41

Remediation Plan 41

3.9 (HAL-09) INTERNAL SERVER ERROR ON INPUT HANDLING - LOW 42

Description 42

Proof of Concept 42

CVSS Vector 43

3



Risk Level 43

Recommendation 43

Remediation Plan 43

4 ANNEX 44

4.1 Web App Security Testing Methodology 45

Planning 45

Execution 45

Post-Execution 50

4



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE

0.1 Document Creation 09/08/2023

0.2 Draft Review 09/11/2023

0.3 Draft Review 09/11/2023

1.0 Remediation Plan 10/23/2023

1.1 Remediation Plan Review 10/23/2023

1.2 Remediation Plan Review 10/24/2023

1.3 Remediation Plan Update 11/01/2023

1.4 Remediation Plan Update Review 11/02/2023

5



CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Carlos Polop Halborn Carlos.Polop@halborn.com

Afaq Abid Halborn Afaq.Abid@halborn.com

6

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Carlos.Polop@halborn.com
mailto:Afaq.Abid@halborn.com


7

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Haqq engaged Halborn to conduct a security assessment on their backend

code and its respective API and services, beginning on August 21st, 2023

and ending on September 8th, 2023. The security assessment was scoped to

the backend and underlying API service. Halborn was provided access to the

application, and its respective source code to conduct security testing

using tools to scan, detect, validate possible vulnerabilities found in

the application and report the findings at the end of the engagement.

1.2 ASSESSMENT SUMMARY

The team at Halborn was provided a timeline for the engagement and

assigned a full-time security engineer to verify the security of the

assets in scope. The security engineer is a penetration testing expert

with advanced knowledge in web, mobile, recon, discovery & infrastructure

penetration testing.

In summary, Halborn identified several vulnerabilities. A potential for

a Denial of Service attack due to long JWT tokens handling at backend

that could adversely affect the application’s availability. Similarly,

we discovered a Docker Compose Environment Variable Misconfiguration and

Cacheable HTTPS Response vulnerabilities, which could expose sensitive

information or configurations. These vulnerabilities are particularly

concerning given the potential for attackers to exploit the environment

or intercept and cache sensitive data.

Furthermore, the application’s API endpoints exhibit a Lack of Rate

Limiting, increasing the risk of brute-force attacks or abuse by automated

bots. Another significant concern revolves around the Outdated Versions

of TLS Supported, which can leave encrypted communications susceptible

to modern attack techniques.

On the web application front, Missing Security Headers were observed,

which can enhance the risk of client-side attacks if not appropriately

addressed. The presence of Reflected Unsanitized Input suggests poten-

8

EX
EC

UT
IV

E
OV

ER
VI

EW



tial vectors for cross-site scripting or similar client-side exploits,

although the current impact is limited.

It was also identified Vulnerable Third-Party Dependencies within the

application stack, potentially introducing known vulnerabilities that

malicious actors could exploit. Lastly, the occurrence of an Internal

Server Error on Input Handling was noted, which, while not immediately

indicative of a vulnerability, but recommended fixing due to the potential

implications and risks associated with such errors.

Throughout the remediation process, the Haqq team successfully resolved

the majority of the identified issues. However, there were specific in-

stances where the Haqq team acknowledged and accepted the risk associated

with certain unresolved issue, choosing to proceed with awareness of the

potential implications.

9

EX
EC

UT
IV

E
OV

ER
VI

EW



1.3 SCOPE

IN-SCOPE:

The following API and its respective repository were in scope:

URLs:

• https://generator-shares.social.production.haqq.network/

• https://social-share-1.social.production.haqq.network/

• https://metadata.social.production.haqq.network/

Repos:

- https://github.com/haqq-network/social/tree/main/generator-shares

- https://github.com/haqq-network/social/tree/main/metadata

- https://github.com/haqq-network/social/tree/main/social-share

- https://github.com/haqq-network/social/tree/main/shared/src

• Commit/Branch: 57d951a31350c0c22607778564d362c13fb7ce45

OUT-OF-SCOPE:

- External Libraries.

10

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/haqq-network/social/commit/57d951a31350c0c22607778564d362c13fb7ce45


1.4 TEST APPROACH & METHODOLOGY

Halborn followed Whitebox and Blackbox methodology as per the scope and

performed a combination of manual and automated security testing with both

to balance efficiency, timeliness, practicality, and accuracy regarding

the scope of the pentest. While manual testing is recommended to uncover

flaws in logic, process and implementation; automated testing techniques

assist enhance coverage of the infrastructure and can quickly identify

flaws in it.

Throughout the assessment, it was followed the following phases, but not

limited to:

• Mapping Content and Functionality

• Application Logic Flaws

• Access Handling

• Authentication/Authorization Flaws

• Rate Limitations Tests

• Brute Force Attempts

• Input Handling

• Response Manipulation

• Source Code Review

• Fuzzing of all input parameters

• Multiple Type of Injection (SQL/JSON/HTML/Command)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

11

EX
EC

UT
IV

E
OV

ER
VI

EW



RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

12

EX
EC

UT
IV

E
OV

ER
VI

EW



2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 5 4 0

IM
PA
CT

LIKELIHOOD

(HAL-03)
(HAL-05)

(HAL-01)

(HAL-06)
(HAL-02)
(HAL-04)

(HAL-07)
(HAL-08)
(HAL-09)

13

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) POTENTIAL DENIAL OF
SERVICE

Medium SOLVED - 10/23/2023

(HAL-02) LACK OF RATE LIMITING IN
API ENDPOINTS

Medium SOLVED - 10/23/2023

(HAL-03) DOCKER COMPOSE ENVIRONMENT
VARIABLE MISCONFIGURATION

Medium SOLVED - 10/31/2023

(HAL-04) OUTDATED VERSIONS OF TLS
SUPPORTED

Medium SOLVED - 09/30/2023

(HAL-05) CACHEABLE HTTPS RESPONSE Medium SOLVED - 10/18/2023

(HAL-06) MISSING SECURITY HEADERS Low SOLVED - 10/18/2023

(HAL-07) REFLECTED UNSANITIZED
INPUT

Low SOLVED - 11/01/2023

(HAL-08) VULNERABLE THIRD PARTY
DEPENDENCIES

Low RISK ACCEPTED

(HAL-09) INTERNAL SERVER ERROR ON
INPUT HANDLING

Low SOLVED - 10/18/2023

14

EX
EC

UT
IV

E
OV

ER
VI

EW



15

FINDINGS & TECH
DETAILS



3.1 (HAL-01) POTENTIAL DENIAL OF
SERVICE - MEDIUM

Description:

During the assessment, it was discovered that the long JWT tokens gen-

erated from API endpoint /api/token were accepted and processed by the

backend.

This oversight can lead to potential resource exhaustion attacks by al-

lowing malicious actors to create and process large JWT tokens, which can

strain the server’s memory and computational resources. The server might

not be the only system component affected by large JWT tokens. Client

applications, middleware, logging systems, or databases that handle or

store these tokens could also face performance issues or errors.

Combined with the lack of rate limiting as reported, this vulnerability

can potentially be exploited to create a Denial-of-Service (DoS) attack.

Proof of Concept:

A POST request with an extremely long email address causes significant

resource utilization on the server.

Figure 1: oversized JWT generation

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Figure 2: Backend processed the oversized JWT

NOTE: It was observed that every new JWT token processing takes some time

(8-10 ms) to process and there is a window in which multiple long JWT

processing could potentially overload the server.

CVSS Vector:

• CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L

Risk Level:

Likelihood - 3

Impact - 4

Recommendation:

It is recommended to implement validation for long JWT tokens at the

backend, ensuring a reasonable maximum length. It is also recommended

to implement rate limiting for the endpoint to prevent rapid repeated

requests.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L


Remediation Plan:

SOLVED: The Haqq team informed that the service to create the test JWT

removed and will not be part of the production, other than that the client

also implemented the rate limitation protection against the identified

services.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.2 (HAL-02) LACK OF RATE LIMITING
IN API ENDPOINTS - MEDIUM

Description:

API requests consume resources such as network, CPU, memory, and storage.

This vulnerability occurs when too many requests arrive simultaneously,

and the API does not have enough compute resources to handle those

requests.

During the assessment, no rate limitation was found on the API services.

An attacker could exploit this vulnerability to overload the API by

sending more requests than it can handle. As a result, the API becomes

unavailable or unresponsive to new requests.

Proof of Concept:

Figure 3: No rate limitation found on https://generator-shares.social.

production.haqq.network/

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Figure 4: No rate limitation found on https://social-share-1.social.

production.haqq.network/

Figure 5: No rate limitation found on https://metadata.social.production

.haqq.network/

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



CVSS Vector:

• CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

This vulnerability is due to the application accepting requests from

users at a given time without performing request throttling checks. It

is recommended to follow the following best practices:

• Implement a limit on how often a client can call the API within a

defined timeframe.

• Notify the client when the limit is exceeded by providing the limit

number and the time the limit will be reset.

Reference:

CWE-770: Allocation of Resources Without Limits or Throttling

Remediation Plan:

SOLVED: The Haqq team solved the issue by implementing the appropriate

rate limitation against the identified services.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
https://cwe.mitre.org/data/definitions/770.html


3.3 (HAL-03) DOCKER COMPOSE
ENVIRONMENT VARIABLE
MISCONFIGURATION - MEDIUM

Description:

The application has a security misconfiguration vulnerability that exposes

sensitive environment variables due to a misconfigured Docker Compose

file. This vulnerability arises from adding an environment variable

to the .env file and defining it in the docker-compose.yml file, which

results in the variable being accessible to all running containers. This

misconfiguration can lead to the exposure of sensitive information and

introduce potential vulnerabilities. It also increases the chances of

single point failure where, If all credentials and keys are centralized

in one .env file, and file be exposed or accidentally get committed

to a public version control repository. If all credentials are in a

single file, the potential damage from such an oversight is significantly

amplified., all associated services and data are at risk also mistakes

can happen.

Code Location:

Listing 1: /docker-compose.dev.yml (Line 27)

24 generator -shares:

25 build: ./generator -shares

26 restart: always

27 env_file: .env

28 environment:

29 GENERATOR_SHARES_STORAGE_PREFIX: "generator_shares"

30 links:

31 - postgres

32 - redis

33 depends_on:

34 - postgres

35 - redis

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 2: /docker-compose.dev.yml (Line 48)

45 metadata:

46 build: ./ metadata

47 restart: always

48 env_file: .env

49 environment:

50 STORAGE_CONTRACT_PRIVATE_KEY: ${METADATA_STORAGE_PRIVATE_KEY

ë }

51 links:

52 - postgres

53 - redis

54 depends_on:

55 - postgres

56 - redis

Listing 3: /docker-compose.dev.yml (Line 70)

67 social_share_1:

68 build: ./social -share

69 restart: always

70 env_file: .env

71 environment:

72 STORAGE_CONTRACT_PRIVATE_KEY: ${

ë STORAGE_CONTRACT_PRIVATE_KEY_1}

73 SOCIAL_SHARE_SECRET_TOKEN: ${SOCIAL_SHARE_SECRET_TOKEN_1}

74 ports:

75 - 8070:8080

76 links:

77 - postgres

78 - redis

79 depends_on:

80 - postgres

81 - redis

Listing 4: /docker-compose.dev.yml (Line 92)

89 social_share_2:

90 build: ./social -share

91 restart: always

92 env_file: .env

93 environment:

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



94 STORAGE_CONTRACT_PRIVATE_KEY: ${

ë STORAGE_CONTRACT_PRIVATE_KEY_2}

95 SOCIAL_SHARE_SECRET_TOKEN: ${SOCIAL_SHARE_SECRET_TOKEN_2}

96 ports:

97 - 8071:8080

Listing 5: /docker-compose.dev.yml (Line 114)

111 social_share_3:

112 build: ./social -share

113 restart: always

114 env_file: .env

115 environment:

116 STORAGE_CONTRACT_PRIVATE_KEY: ${

ë STORAGE_CONTRACT_PRIVATE_KEY_3}

117 SOCIAL_SHARE_SECRET_TOKEN: ${SOCIAL_SHARE_SECRET_TOKEN_3}

118 ports:

119 - 8072:8080

Listing 6: /docker-compose.dev.yml (Line 136)

133 social_share_4:

134 build: ./social -share

135 restart: always

136 env_file: .env

137 environment:

138 STORAGE_CONTRACT_PRIVATE_KEY: ${

ë STORAGE_CONTRACT_PRIVATE_KEY_4}

139 SOCIAL_SHARE_SECRET_TOKEN: ${SOCIAL_SHARE_SECRET_TOKEN_4}

140 ports:

141 - 8073:8080

142 links:

Listing 7: /docker-compose.dev.yml (Line 158)

155 social_share_5:

156 build: ./social -share

157 restart: always

158 env_file: .env

159 environment:

160 STORAGE_CONTRACT_PRIVATE_KEY: ${

ë STORAGE_CONTRACT_PRIVATE_KEY_5}

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



161 SOCIAL_SHARE_SECRET_TOKEN: ${SOCIAL_SHARE_SECRET_TOKEN_5}

162 ports:

163 - 8074:8080

CVSS Vector:

• CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:C/C:L/I:L/A:N

Risk Level:

Likelihood - 2

Impact - 4

Recommendation:

Docker-compose allows us to define environment variables to pass to

running containers with the environment option. It is recommended to use

this config instead of the env_file option.

Reference:

Why you should split your env file

Remediation Plan:

SOLVED: The Haqq team solved the issue as per the recommendations.

NOTE: Retest was conducted on the following commit:

- d1d6e759dfc73e291a77cfe90724e9dcf077f31b

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:C/C:L/I:L/A:N
https://ypereirareis.github.io/blog/2019/10/28/why-you-should-split-env-file-with-docker-compose-docker-swarm-stack-and-services/
https://github.com/haqq-network/social/commit/d1d6e759dfc73e291a77cfe90724e9dcf077f31b


3.4 (HAL-04) OUTDATED VERSIONS OF
TLS SUPPORTED - MEDIUM

Description:

Several misconfigurations were identified within the application’s TLS

configuration that could compromise the security of communications.

Scoped URLs in the application have been identified to support the

deprecated and vulnerable versions of TLS: v1.0 and TLS v1.1. These

versions are no longer deemed secure due to numerous cryptographic

design flaws. As technology advances, so does the capability to exploit

these vulnerabilities. While current attacks targeting weak cipher

suites or vulnerable algorithms might seem sophisticated and complex,

the relentless growth in computational power means these attacks will

only become more feasible and straightforward to execute as time goes on.

These outdated TLS versions have been superseded by newer versions (e.g.,

TLS v1.3) which provide enhanced security features and address many of

the vulnerabilities found in their predecessors. By supporting these

older versions, the application not only endangers the integrity and

confidentiality of data in transit but also risks non-compliance with

modern security standards and regulations.

Specifically, the risks of using these deprecated TLS versions include

but are not limited to:

Cipher Suite Attacks: Adversaries can exploit weak cipher suites to

decrypt sensitive data.

Session Hijacking: Vulnerabilities in older versions can allow attackers

to hijack a user’s session.

Man-in-the-Middle Attacks: An attacker can intercept and possibly alter

the communication between two parties without either party noticing.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Proof of Concept:

Figure 6: Multiple TLS issues affecting generator-shares.social.

production.haqq.network

Figure 7: Multiple TLS issues affecting social-share-1.social.production

.haqq.network

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Figure 8: Multiple TLS issues affecting metadata.social.production.haqq

.network

CVSS Vector:

CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:L/A:N

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

As the application functionality was hosted across multiple servers, the

TLS configuration of each should be reviewed and updated to comply with

security best practice and to minimize the risk of existing and future

TLS vulnerabilities.

• Support for TLS 1.0 and TLS 1.1 should be disabled.

• Support for the weak cipher suites identified above should be

removed.

• Key lengths of 256 bits and above should be used for symmetric

encryption algorithms and a length of 4096 bits should be used for

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:L/A:N


RSA algorithms. For asymmetric keys generated with ECC algorithms,

the minimum recommended key size is 512 bits.

References Lucky13 Vulnerability

Remediation Plan:

SOLVED: Haqq team solved the issue by disabling the support for outdated

TLS version.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://crashtest-security.com/prevent-ssl-lucky13/


3.5 (HAL-05) CACHEABLE HTTPS
RESPONSE - MEDIUM

Description:

During the assessment, it has been identified that the application did

not define any cache directive and due to this security misconfiguration

vulnerability HTTPS responses can be stored in intermediary caches, such

as Content Delivery Network (CDN) caches, browser caches, or proxy caches.

If sensitive information or responses are cached, unauthorized users may

access them, leading to potential data leaks.

Proof of Concept:

Figure 9: No caching directives found at https://generator-shares.social

.production.haqq.network/

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Figure 10: No caching directives found at https://social-share-1.social

.production.haqq.network/

Figure 11: No caching directives found at https://metadata.social.

production.haqq.network/

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Figure 12: Browser stores the response, contains key share values in its

cache

Risk Level:

Likelihood - 2

Impact - 4

CVSS Vector:

• CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N

Recommendation:

Applications should return caching directives instructing browsers not to

store local copies of any sensitive data. Often, this can be achieved by

configuring the web server to prevent caching for relevant paths within

the web root. Alternatively, most web development platforms allow you to

control the server’s caching directives from within individual scripts.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N


Ideally, the web server should return the following HTTP headers in all

responses containing sensitive content:

Listing 8

1 Cache -control: no -store

2 Pragma: no-cache

Reference:

MDN Web Docs: Cache-Control

Remediation Plan:

SOLVED: The Haqq team solved the issue by implementing the appropriate

cache headers against the services.

NOTE: Retest was conducted on the following commit:

- 15e71e0eb5467b4f9881a95404eb46ad2fa98582

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://github.com/haqq-network/social/commit/15e71e0eb5467b4f9881a95404eb46ad2fa98582


3.6 (HAL-06) MISSING SECURITY
HEADERS - LOW

Description:

Important security HTTP Headers were missing from the API services.

These headers used by the client browser improve the security of end

users against common attacks.

Missing important security headers;

Strict-Transport-Security and Content-Security-Policy response headers.

• Content-Security-Policy is an effective measure to protect your site

from XSS attacks. By whitelisting sources of approved content, it

is possible to prevent the browser from loading malicious assets.

• Strict-Transport-Security HTTP Strict Transport Security is an

excellent feature to support on your site and strengthens your

implementation of TLS by getting the User Agent to enforce

the use of HTTPS. Recommended value “Strict-Transport-Security:

max-age=31536000; includeSubDomains”.

Proof of Concept:

Figure 13: Missing security headers on https://generator-shares.social.

production.haqq.network/

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Figure 14: Missing security headers on https://social-share-1.social.

production.haqq.network/

Figure 15: Missing security headers on https://metadata.social.

production.haqq.network/

CVSS Vector:

• CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:N/A:N

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

It is recommended to define these headers in API services; Content-

Security-Policy and Strict-Transport-Security response headers with

appropriate policies.

Reference:

Content Security Policy

Strict-Transport-Security

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:N/A:N
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://scotthelme.co.uk/hsts-the-missing-link-in-tls/


Remediation Plan:

SOLVED: The Haqq team solved the issue by implementing the security

headers with appropriate policies.

NOTE: Retest was conducted on the following commit:

- 15e71e0eb5467b4f9881a95404eb46ad2fa98582

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/haqq-network/social/commit/15e71e0eb5467b4f9881a95404eb46ad2fa98582


3.7 (HAL-07) REFLECTED UNSANITIZED
INPUT - LOW

Description:

It was identified user’s inputs reflected in the response of API request

in id parameter. It is worth noting that these values did not cause any

XSS type injection attack currently on the UI. This, however, does not

mean that the response is not displayed, or will not be displayed in the

future, on other web pages, making it a potential Cross Site Scripting

attack vector.

Screenshot:

Figure 16: Reflected unsanitized input on API response in id parameter

Figure 17: Reflected unsanitized input on API response in id parameter

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Figure 18: Reflected unsanitized input on API response in id parameter

CVSS Vector:

• CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:L/I:L/A:N

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

It is recommended to sanitize and validate all user input on the API

level as well. One commonly used technique is HTML entity encoding,

which converts special characters into their corresponding HTML entities.

This approach ensures that user input is safely handled by the server

and can be safely displayed in the browser without being interpreted as

HTML or script code. Additionally, implementing Content Security Policy

(CSP) headers can further restrict potential malicious scripts from being

executed.

Reference:

Cross Site Scripting Prevention Cheat Sheet

Content Security Policy

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:L/I:L/A:N
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP


Remediation Plan:

SOLVED: The Haqq team solved the issue as per the recommendations.

NOTE: Retest was conducted on the following commit:

- 964dcf60eb894f352ca98fbfa5824b472372261a

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/haqq-network/social/commit/964dcf60eb894f352ca98fbfa5824b472372261a


3.8 (HAL-08) VULNERABLE THIRD PARTY
DEPENDENCIES - LOW

Description:

The scoped repository uses multiple third-party dependencies. Using

vulnerable third-party libraries can result in security vulnerabilities

in the project that can be exploited by attackers. This can result in

data breaches, theft of sensitive information, and other security issues.

However, some of them were affected by public-known vulnerabilities that

may pose a risk to the global application security level.

Proof of Concept:

Figure 19: Multiple vulnerable dependencies reported in repository

(cargo)

CVSS Vector:

• CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N


Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

It is strongly recommended to update all affected packages to its latest

version. It is also recommended to perform an automated analysis of

the dependencies from the birth of the project and if they contain

any security issues. Developers should be aware of this and apply any

necessary mitigation measures to protect the affected application.

References:

OWASP. Vulnerable and Outdated Components

OWASP. Vulnerable Dependency Management Cheat Sheet

Remediation Plan:

RISK ACCEPTED: The Haqq team accepted the risk of this finding.

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://cheatsheetseries.owasp.org/cheatsheets/Vulnerable_Dependency_Management_Cheat_Sheet.html


3.9 (HAL-09) INTERNAL SERVER ERROR
ON INPUT HANDLING - LOW

Description:

During the assessment, we identified that due to lack of input validation

and error handling some input parameters lead to an “Internal Server

Error”. This error suggests that the server encountered an unexpected

condition which prevented it from fulfilling the request. This error

gives an attacker insight of the backend or could be exploited to cause

further issues. Such occurrences can signify potential vulnerabilities,

misconfigurations, or other underlying issues that malicious actors might

exploit. Beyond the immediate service disruption, this lack of error

handling could lead to various security risks, from information disclosure

to potential vectors for more sophisticated attacks.

Proof of Concept:

Figure 20: Internal server error in application response

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Figure 21: Internal server error in application response

CVSS Vector:

• CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

It is recommended to implement robust error handling. Return

user-friendly messages for errors and log technical details server-side,

also ensuring no sensitive information leaks. It is also recommended to

enhance input validation mechanisms to reject unexpected or malicious

values. Ensure that specific parameter inputs are strictly validated.

Remediation Plan:

SOLVED: The Haqq team solved the issue by implementing the appropriate

checks.

NOTE: Retest was conducted on the following commit:

- 15e71e0eb5467b4f9881a95404eb46ad2fa98582

43

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N
https://github.com/haqq-network/social/commit/15e71e0eb5467b4f9881a95404eb46ad2fa98582


44

ANNEX



4.1 Web App Security Testing
Methodology

Planning:

1. Gather Scoping Information

After starting the project, scope/target information is collected

from the client. In the case of web apps penetration testing, this

information includes IP addresses and URLs, a definition files or

documentation such as swagger or postman, the source code (if possible),

authentication credentials, and/or API tokens (2 sets of credentials

for each feature being tested) and a list of any sensitive or restricted

endpoints/functionalities that should not be scanned or exploited.

Halborn and the client jointly review and acknowledge the penetration

testing rules of engagement, confirm project scope and testing timeline,

identify specific testing objectives, document any testing limitations

or restrictions, and answer any questions related to the project.

Execution:

1. Information gathering

The information-gathering phase consists of gathering information about

the app, including its purpose, functionality, documentation, endpoints,

and authentication mechanisms. Understand the app’s intended use and

potential attack vectors.

It includes application footprinting, metafile leakage review, listing

services, operating system functions, and application fingerprinting.

This step maps the in-scope application to prepare for identifying

exploitable vulnerabilities collectively.

During the Information Gathering phase, Halborn does:

• Use discovery tools to uncover information about the application

passively.

45

AN
NE

X



• Identify entry points into the application, such as administration

portals or backdoors.

• Perform application fingerprinting to identify the underlying

development language and components.

• Send fuzzing requests for analysis of error codes that may disclose

sensitive data that could be used to launch a more targeted

cyberattack.

• Actively scan for open services and develop a test plan for the

latter phases of the vulnerability assessment.

If the source code was provided, all this discovery could be done in a

more effective way by reading it.

2. Threat Modeling

The threat modeling phase serves to evaluate the types of threats that

may affect the target apps that are in scope. The types of attacks

and likelihood of these threats materializing serve to inform risk

rankings/priorities that are assigned to vulnerabilities throughout the

assessment.

The perspective of the testing (external/internal, authenticated/unauthenticated,

black box/crystal box, etc.) is also identified to ensure

the validity of vulnerabilities discovered. This phase of the

assessment also includes manual review of the exposed endpoints,

determining business functionality of the endpoints, and identifying

unauthenticated/authenticated endpoint attack surface.

With the information collected from the previous step, the testing process

transitions to identifying security vulnerabilities in the app.

During this phase, Halborn does:

• Use open-source, commercial, and internally developed tools to

identify and confirm well-known vulnerabilities.

• Swagger/Postman documents in-scope to effectively build a map of

each feature, component, and area of interest.

46

AN
NE

X



• Send fuzzing requests to analyze error codes that may disclose

valuable information that can launch a more targeted attack.

• Build the application’s threat model using the information gathered

in this and the previous phase to be used as a plan of attack for

later stages of the penetration test.

If the source code was provided, every unexpected behavior detected will

be checked on it to find out the exact reason and discover if it is

exploitable in any way.

3. Vulnerability Analysis

The vulnerability analysis phase will encompass the enumeration of

all in-scope targets/applications at both the network layer and the

application layer. The phase involves documenting and analyzing

vulnerabilities discovered due to Information Gathering and Threat

Modeling. This step includes the analysis of output from the various

security tools and manual testing techniques.

In the Vulnerability Analysis phase, Halborn does:

• Compile the list of areas of interest and develop a plan for

exploitation.

• Search and gather known exploits from various sources.

• Analyze the impact and likelihood of each potentially exploitable

vulnerability.

• Select the best methods and tools for adequately exploiting each of

the suspected security vulnerabilities.

In this phase, Halborn performs an in-depth security source code review

with 2 stages:

• Automatic review: The source code is verified using specialized

tools/software to scan and examine the code for common security

vulnerabilities and insecure coding practices. These tools employ

47

AN
NE

X



various techniques, such as pattern matching, data flow analysis,

and control flow analysis, to identify potential security risks. The

tools used will vary depending on the language of the source code.

Additionally, these tools may not detect all types of security

vulnerabilities, and manual security assessments and penetration

testing are still essential for a comprehensive security evaluation

of an application.

• Manual review: The source code is reviewed by Halborn security

experts to identify security vulnerabilities and weaknesses. Unlike

automatic security source code reviews, which rely on automated

tools, a manual review involves a careful and in-depth examination

of the code by experienced security professionals. In this case,

Halborn security professionals will perform a thorough examination

of the code and identify complex vulnerabilities that may not be

easily detected by automated tools.

4. Exploitation

This phase involves taking all potential vulnerabilities identified in

the previous phases of the assessment and attempting to exploit them

as an attacker would. This helps to evaluate the realistic risk level

associated with the successful exploitation of the vulnerability, analyze

the possibility of exploit/attack chains, and account for any mitigating

controls that may be in place.

Exploitation involves establishing access to the application or connected

components by bypassing security controls and exploiting vulnerabilities

to determine their real-world risk through ethical hacking. Throughout

this step, several manual tests will be performed simulating real-world

exploits incapable of being achieved through automated means. During a

Halborn penetration test, the exploitation phase involves heavy manual

testing tactics and is often the most time-intensive.

This includes business logic flaws, authentication/authorization

bypasses, direct object references, injection-style attacks (SQL,

command, XPath, LDAP, XXE, XSS), error analysis, file uploads, parameter

tampering, and session management etc.

48

AN
NE

X



The exploitation part includes:

• Authorization and Authentication Testing: Test the app’s

authentication mechanisms, such as API keys, tokens, OAuth, or

other access control methods. Verify if proper authentication is

enforced and that it cannot be easily bypassed or abused.

• Input Validation: Test for input validation vulnerabilities, such

as injection attacks (SQL, command, or XML), cross-site scripting

(XSS), Path, RCE, and cross-site request forgery (CSRF) etc. Send

malicious input to the app endpoints to identify any security

weaknesses.

• Error Handling: Check how the app handles various error conditions,

such as invalid input, server-side errors, or exceptions. Determine

if error messages reveal sensitive information that could aid

attackers.

• Data Integrity and Confidentiality: Assess the app’s ability to

protect data integrity and confidentiality during transmission and

storage. Evaluate the implementation of encryption, secure transport

protocols (e.g., HTTPS), and secure storage practices.

• Session Management: Test how the app manages sessions, tokens, and

state information. Identify any session-related vulnerabilities

that could lead to unauthorized access or privilege escalation.

• Business Logic Testing: Analyze the app’s business logic to identify

vulnerabilities or flaws in the design and implementation. Test for

authorization bypass, bypassing custom workflows, insecure direct

object references, and other logical vulnerabilities.

• Rate Limiting and Throttling: Evaluate if the app has proper rate

limiting and throttling mechanisms in place to prevent abuse and

mitigate denial-of-service (DoS) attacks.

• Source code review: Potential vulnerabilities found in both

automatic and manual source code review will be reviewed and

exploited.

49

AN
NE

X



• Third-Party Integration: Assess the security of any third-party

libraries, frameworks, or services used in the app implementation.

Review their security controls and potential vulnerabilities.

In the Exploitation phase, Halborn does conduct:

• Attempt to manually exploit the vulnerabilities identified in the

previous steps to determine the possible level of risk and level of

exploitation.

• Capture and log evidence to provide proof of exploitation (images,

screenshots, configs, etc.).

• Notify the client of findings.

5. Post Exploitation

After successful exploitation, analysis may continue, including

infrastructure analysis, pivoting, sensitive data identification,

data exfiltration, and identification of high-value targets/data. The

information collected here is used in the prioritization and criticality

ranking of identified vulnerabilities.

Furthermore, chaining different vulnerabilities can lead to

proof-of-concept vulnerabilities with higher critically.

Post-Execution:

1. Reporting

After completing all the phases, Halborn formally documents the findings.

The output provided generally includes an executive-level report and a

technical findings report. The executive-level report is written for

management consumption and includes a high-level overview of assessment

activities, scope, most critical/thematic issues discovered, overall risk

scoring, organizational security strengths, and applicable screenshots.

The technical findings report, on the other hand, includes all

vulnerabilities listed individually, with details as to how to recreate

50

AN
NE

X



the issue, understand the risk, recommended remediation actions, and

helpful reference links. Both include actionable recommendations for

improving security.

2. Quality Assurance

All assessments go through a rigorous technical and editorial quality

assurance phase. This may also include follow-ups with the client to

confirm or deny details, as appropriate.

3. Presentation

The final activity in any assessment is a presentation of all documentation

to the client. Halborn walks the client through the information provided,

makes any updates needed, and addresses questions regarding the assessment

output. Following this activity, new revisions of documentation and

schedule any formal retesting are provided, if applicable.

51

AN
NE

X



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	SCOPE
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY


	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Proof of Concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	CVSS Vector
	Risk Level
	Recommendation
	Reference
	Remediation Plan

	
	Description
	Code Location
	CVSS Vector
	Risk Level
	Recommendation
	Reference
	Remediation Plan

	
	Description
	Proof of Concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Risk Level
	CVSS Vector
	Recommendation
	Reference
	Remediation Plan

	
	Description
	Proof of Concept
	CVSS Vector
	Risk Level
	Recommendation
	Reference
	Remediation Plan

	
	Description
	Screenshot
	CVSS Vector
	Risk Level
	Recommendation
	Reference
	Remediation Plan

	
	Description
	Proof of Concept
	CVSS Vector
	Risk Level
	Recommendation
	References
	Remediation Plan

	
	Description
	Proof of Concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan


	ANNEX
	Web App Security Testing Methodology
	Planning
	Execution
	Post-Execution



